If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-78=0
a = 1; b = -3; c = -78;
Δ = b2-4ac
Δ = -32-4·1·(-78)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{321}}{2*1}=\frac{3-\sqrt{321}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{321}}{2*1}=\frac{3+\sqrt{321}}{2} $
| 7u-2/3=-1/3u-2/5 | | x^2-3x-78.75=0 | | x=4/5*(x+10) | | 9x+10=-89 | | 9x-10=-89 | | 5x+13=-62 | | 6.d=9 | | 2x+24=-74 | | -4x-2=+18 | | 10x+12=-88 | | 4(p+13)=108 | | a-7/3=5 | | 6(17x-2)^2+11=311 | | 7-8x=25 | | 2b+13=81 | | 112+(-2)y=85-y | | 22-2x=2x+10 | | 7x+5x-3+9=20 | | 4x-3x+7=11 | | -2+4x=6(-4) | | 5.8=0.15+c | | 5.8=0.15c | | 3(a-4)=4(a+7) | | 1/2y=3+1/4y | | 10-x/10=x/40 | | 7x-1=2x+80 | | x2+21-10x=0 | | Y2+6y-91=0 | | x/3+17=300 | | 25-k=10 | | x/10+7=82 | | 10x+1477=933 |